TELEDETECCIÓN - Hacia un mejor entendimiento de la dinámica global y regional Ed. Martin, 2007, ISBN: 978-987-543-126-3

Evaluación comparativa de imágenes Feng Yun 1D, NOAA AVHRR, MODIS y LandSat TM 5 funcionando como una constelación de satélites para la detección de áreas quemadas en las islas del Valle de Inundación del Paraná Medio, Argentina.

Cotlier, Carlos G. 1; Vicioso, Benito 2; López, Diego A. G. ;1 Belaga, José2

¹ Centro de Sensores Remotos - Facultad de Ciencias Exactas, Ingeniería y Agrimensura Pellegrini 250, 2000, Rosario, provincia de Santa Fe, ARGENTINA

csr@fceia.unr.edu.ar

² Escuela de Agrimensura - Facultad de Ciencias Exactas, Ingeniería y Agrimensura Pellegrini 250, 2000, Rosario, provincia de Santa Fe, ARGENTINA

RESUMEN

La quema de pastizales y arbustos en las islas pertenecientes al Valle de Inundación del Paraná, con el fin de obtener pasturas blandas para la explotación pecuaria, se ha intensificado en los últimos años, provocando la destrucción parcial de un humedal con características únicas en el mundo.

Esta reserva de flora y fauna por sus características debería ser monitoreada contra la quema indiscriminada.

Se utilizaron para el análisis de las zonas afectadas los índices NDII (Normalized Difference Infrared Index) y BAI (Burned Area Index) y imágenes creadas mediante combinaciones de bandas infrarrojas.

Palabras Clave: Detección, Areas, Quemadas..-

Uso de Sensores Remotos para determinación de Areas Quemadas

Durante los últimos años y con el fin de obtener nuevos pastizales para la actividad pecuaria se ha intensificado la quema de áreas en las islas del valle de inundación del río Paraná, desde la Ciudad de Santa Fe hasta la Ciudad de Campana, Argentina.

Estas quemas se han intensificado en los últimos 3 años debido al traslado de parte de la frontera pecuaria desde las provincias del litoral argentino (Santa Fe – Corrientes - Entre Ríos) a la zona conocida como valle de inundación del río Paraná.

Este humedal con características únicas en el mundo, es una reserva de flora y fauna que por sus características debería ser monitoreada con respecto a la quema indiscriminada. La actividad pecuaria y forestal es posible siempre y cuando se realicen los controles que esta actividad causa sobre pastos naturales y vegetación autóctona.

La imágenes satelitales son una herramienta útil e idónea para el control y monitoreo sistemático de estos tipos de actividad y control de posibles daños al medio ambiente.

La Imagen Nº 1 corresponde a una del satélite Feng Yun 1D del día 26/03/2004 a las 9:05:09 horas. El circulo de color blanco identifica a uno de los focos que se aprecia una pluma de humo. La ciudad de Rosario esta localizada con la letra A.

La Imagen Nº 2 corresponde a una del satélite NOAA 12 del día 25/08/2004 a las 20:43:46 horas. El circulo de color blanco identifica a uno de los focos que se aprecia una importante pluma de humo. La ciudad de Rosario esta localizada con la letra A.

Con la ayuda de la calibración de temperatura del canal 3 de ambos satélites, se pueden generar imágenes en la que los focos de calor se identifican como puntos rojos como lo apreciamos en las imágenes Nº 3 y Nº 4.

Imagen Nº 1 - Bandas 321 en RGB

Imagen Nº 2 - Bandas 321 en RGB

Imagen Nº 3 - Bandas 321 en RGB

Imagen Nº 4 - Bandas 321 en RGB

Bandas 743 en RGB Imagen Nº 5

Banda 7 Imagen Nº 6

Metodología Empleada

Mediante la utilización de distintos sensores sobre una misma áreas de estudio se pretende determinar si el uso de información de una constelación de satélites permiten determinar cuales de los mismos son los óptimos ya sea por resolución espacial o espectral.

a) se utilizo una imagen LandSat 5 TM (18 de Febrero de 2006) para determinar con la mayor precisión posible la ubicación de focos de incendios, se procedido a selecciona un foco con una pluma de humo notoria.

b) Valiéndonos de la alta resolución temporal se utilizaron imágenes satelitales NOAA-AVHRR, Feng Yun 1D y MODIS del día siguiente (19 de Febrero de 2006), esta información se utilizo para investigar las áreas ya quemadas y poder analizar las respuestas espectrales de las distintas plataformas.

Las imágenes de los satélites NOAA-AVHRR y Feng Yun 1D de captación diaria y «tiempo real» fueron captadas por la estación terrena del Centro de Sensores Remotos de la Facultad de Ingeniería, Universidad Nacional de Rosario (www.fceia.unr.edu.ar/csr), son de las denominadas de «baja resolución» (1,1 km. por pixel) sin embargo son aptas para el monitoreo, determinación de focos de calor y áreas desbastadas por el fuego (Chuvieco, Martín, Ventura, 2002)[1].

El uso de otras imágenes de los satélites MODIS y LandSat, complementan junto con los Sistemas de Información Geográfica una herramienta idónea evaluar los incendios en las áreas afectadas y determinar el posible daño causado a la vegetación silvestre (J. C. Pereira, 1999)[2].

Mientras que las imágenes diarias de los satélites NOAA-AVHRR, Feng Yun 1D y MODIS (página web de internet oficial http://modisfire.gsfc.nasa.gov) permiten la detección en forma horaria de los focos de calor, el uso de las imágenes LandSat TM 5 permiten una cuantificación de la cobertura vegetal desbastada por los incendios complementándose todo esto con el uso de los Sistemas de Información Geográfica ArcInfo/ArcView Image Analysis (ESRI- Environmental Systems Research Institute, Inc. 1990).

Procesamiento de las imágenes.

Luego de su captura, las imágenes NOAA y Feng Yun fueron convertidas a un archivo a formato ENVI a través del software SIAMIV (Satellite Image and Meteorological Information Viewer 5.0w de Dartcom), este software con la información orbital capturada del satélite en su paso sobre la zona, proyecta la imagen con la información geográfica almacenada durante la captura permitiendo la rectificación, quedando así la imagen georreferenciada.

Los ajustes finos se realizaron con una vectorización de distintas capas temáticas que se pueden localizar en la imagen (costa, cursos de agua, etc.).

Se utilizaron para esta investigación imágenes del archivo CSR-FCEIA, del 19 de Febrero del año 2006 de ambas plataformas satelitales, NOAA y Feng Yun.

Análisis de áreas quemadas con imágenes de baja y mediana resolución espacial.

Análisis de la Imagen LandSat 18/02/2006.

Se determino la posición geográfica de un grupo de pixeles haciendo centro en el pixel de la Imagen N^o5 LandSat 5 TM de bandas 743 en RGB, del 18 de febrero de 2006, donde se encontraba un foco de fuego intenso en la ubicación geográfica del pixel N^o 1:

Latitud: -33º 39' 34.8"

Longitud: -59º 18' 41.9"

En las matrices están los distintos valores de las bandas calibradas. Nótese que en la imagen Nº 2 cuyo valor 0,900540 es el mas alto de una matriz de 10x10 circundado por valores que os-

cilan entre 0,6 y 0,4 posible indicación de los pixeles hacia donde estaba el foco principal.

Se nota además la pluma de humo hacia el sudoeste en la Imagen Nº 8.

En la Imagen Nº 9 (IRT - banda 6) se denota un comportamiento similar al de la Imagen Nº 6 (IRM – banda 7) con esa misma distribución de valores altos y bajos.

Banda 3 Imagen Nº 8

Banda 6 Imagen Nº 9

	5556	5557	5558	5559	5560	
4417	0.0559587	0.0595223	0.0702132	0.0809041	0.112977	-
4418	0.0595223	0.0666496	0.102286	0.255522	0.255522	
4419	0.0773405	0.0452678	0.294722	0.586940	0.586940	
4420	0.0702132	0.0238860	0.647522	0.472904	0.472904	
4421	0.0809041	0.0737769	0.380250	0.447959	0.447959	
4422	0.0559587	0.248395	0.900540	0.547740	0.547740	
4423	0.0666496	0.308977	0.900540	0.611886	0.611886	
4424	0.0310133	0.480031	0.636831	0.187813	0.187813	
4425	0.0595223	0.255522	0.362431	0.0915951	0.0915951	
4426	0.0844678	0.137922	0.0915951	0.0809041	0.0809041	
4427	0.0737769	0.0737769	0.0595223	0.0773405	0.0773405	-
			10000			1

Subset de Matriz 51x51 - Banda 7

	5556	5557	5558	5559	5560	
4417	0.214461	0.214461	0.211072	0.190734	0.126331	
4418	0.214461	0.214461	0.211072	0.190734	0.126331	
4419	0.207682	0.207682	0.200903	0.177175	0.129720	
4420	0.197513	0.197513	0.187344	0.167006	0.112772	
4421	0.187344	0.187344	0.187344	0.153448	0.119551	
4422	0.190734	0.190734	0.177175	0.156837	0.119551	- 11
4423	0.173786	0.173786	0.180565	0.156837	0.156837	- 11
4424	0.190734	0.190734	0.224630	0.150058	0.150058	
4425	0.221241	0.221241	0.251748	0.190734	0.197513	
4426	0.251748	0.251748	0.248358	0.221241	0.224630	
4427	0.265306	0.265306	0.234799	0.234799	0.244968	

Subset de Matriz 51x51 - Banda 4

	5556	5557	5558	5559	5560	
4417	0.0567037	0.0539873	0.0567037	0.0648528	0.0675692	
4410	0.0562037	0.0562032	0.0567037	0.0675692	0.0675692	
4419	0.0567037	0.0567037	0.0567037	0.0675692	0.0675692	
4420	0.0539973	0.0567037	0.0648528	0.0757102	0.0730019	
4421	0.0562037	0.0539873	0.0893000	0.105598	0.0865837	
4422	0.0567037	0.0702055	0.124613	0.111031	0.0947328	111
4423	0.0567037	0.111031	0.135470	0.124613	0.100315	
4424	0.0784346	0.149060	0.146344	0.0947328	0.0893000	
4425	0.0920164	0.178940	0.138195	0.0784346	0.0757182	
4426	0.135470	0.151776	0.0065037	0.0648520	0.0702055	
4427	0.146344	0.100165	0.0784346	0.0675692	0.0675682	
	4		A COLORED IN COLORED			> 🖂

Subset de Matriz 51x51 - Banda 3

	5556	5557	5558	5559	5560	
4417	301.675	301.675	301.675	309.722	309.722	
4410	299.585	299.585	323.148	323.148	323.148	
4419	299.505	299.585	323.140	323.148	323.140	
4420	299.505	299.505	323.140	323.148	323.140	
4421	299.585	299.585	323.148	323.148	323.148	
4422	301.260	301.260	323.504	323.504	323.504	111
4423	301.260	301.260	323.504	323.504	323.504	
4424	301.260	301,260	323.504	323.504	323.504	
4425	301.260	301.260	323.504	323.504	323.504	
4426	299.505	299.585	301.260	301.260	301.260	
4427	299.585	289.585	301.260	301.260	301.260	
	4		100			ъG

Subset de Matriz 51x51 - Banda 6

Imágenes Feng Yun 1D - NOAA - MODIS.

Se localizo el mismo pixel utilizando imágenes NOAA, Feng Yun y MODIS. Algunos autores (Chuvieco, Martín, Ventura-2002) han utilizado imágenes NOAA y MODIS para este tipo de análisis.

En nuestro caso se utilizo la imagen LandSat para definir focos de incendios y utilizar las imágenes Fen Yun 1D, NOAA, MODIS del día siguiente a la LandSat con los focos ya extinguidos para realizar el análisis de los valores matriciales de las imágenes ya calibradas de las áreas quemadas.

Esto nos permitió analizar las distintas respuestas espectrales de los distintos radiómetros durante y después de los fuegos.

A continuación se detalla para una mejor comprensión un cuadro demostrativo de los valores espectrales de las bandas mas similares de las distintas plataformas.

En la tabla siguiente se representa el análisis comparativo de las bandas de las distintas plataformas utilizadas.

		Rango Es	pectral (μm)	
Banda	NOAA 17	Feng Yun 1D	Landsat 5	MODIS
1	0.580 - 0.680	0.580 - 0.680	0.45 - 0.52	0.620 - 0.670
2	0.725 - 1.000	0.840 - 0.890	0.52 - 0.60	0.841 - 0.876
3	1.580 - 1.640	3.550 - 3.930	0.63 - 0.69	0.459 - 0.479
4	10.30 - 11.30 -	10.30 - 11.30	0.76 - 0.90	0.545 - 0.565
5	11.50 - 12.50 —	11.50 - 12.50	1.55 - 1.75	1.230 - 1.250
6		1.580 - 1.640	10.4 - 12.5	1.628 - 1.652
7		0.430 - 0.480 /	2.08 - 2.35	2.105 - 2.155
8		0.480 - 0.530		
9		0.530 - 0.580	1	
10		0.900 - 0.965	1	
R	JO VERDE	AZUL IF	RC IRM	IRT

Tabla Nº 1- Esquema comparativo de los distintos sensores y su similitud de valores espectrales en cada una de las plataformas utilizadas.

Corrección del efecto Bow tie en la imagen MODIS.

Se corrigió el la deformación que se produce en la captura de los datos por el sensor MODIS debido a la característica constructiva este sensor capta de a diez líneas simultaneas lo que provoca una deformación de los pixeles que se alejan del nadir de la imagen.

Cálculos de índices para detección de áreas especificas

Para un mejor análisis de las zonas afectadas se calculo el NDII (Normalized Difference Infrared Index) y BAI (Burned Area Index).

NDII (Normalized Difference Infrared Index).

Según Chuvieco, Martín, Ventura (2002)[1] este índice fue utilizado para analizar concentraciones de humedad en plantas (Hunt y Rock, 1989) [3] utilizando las bandas del infrarrojo cercano (IRC) y del infrarrojo medio (IRM).

$$\begin{aligned} NDII &= \frac{B_2 - B_3}{B_2 + B_3} & \text{para NOAA-AVHRR} \\ NDII &= \frac{B_2 - B_6}{B_2 + B_6} & \text{para Feng Yun 1D} \\ NDII &= \frac{B_2 - B_7}{B_2 + B_7} & \text{para MODIS} \\ NDII &= \frac{TM_4 - TM_7}{TM_4 + TM_7} & \text{para LandSat 5 TM} \end{aligned}$$

BAI (Burned Area Index).

En el caso de las imágenes NOAA, Feng Yun 1D y MODIS se calculo el BAI (índice espectral de área quemada) (Martín, M.P. 1998) [4].

$$BAI = \frac{1}{(pc_r - \rho_r)^2 + (pc_{nir} - \rho_{nir})^2}$$

para NOAA-AVHRR y Feng Yun 1D

$$BAI_M = \frac{1}{(pc_{nir} + \rho_{swir})^2 + (pc_{nir} - \rho_{swir})^2}$$

para MODIS

«Donde el pc, y pc, son los denominados valores de convergencia para áreas recientemente quemadas, tomando para el sensor NOAA el valor de 0,1 y 0,06 respectivamente». (Chuvieco, Martín, Ventura 2002) [1] a partir de las bandas infrarrojo cercano y rojo). En nuestro caso incluimos al Feng Yun dado la similitud de resolución espacial y espectral.

Análisis de la Imagen MODIS 19/02/2006. Hora 14:26 AM.

La multitemporalidad de MODIS permitió analizar el área quemada 24 horas después de localizado el foco, como el área esta compuesta por pastizales y arbustos se puede suponer que el área detectada por la composición de las bandas 721 en RGB alrededor del la latitud y longitud del pixel LandSat es un promedio con una resolución espacial de 500 metros o sea que seria el equivalente a una matriz LandSat de 17x17 pixeles. Para comparar resultados se analizo la matriz de la Banda 2 (IRC) que consideramos adecuada para la determinación del estado fenológico de la vegetación.

Se pudo determinar que para le pixel Nº 1 de:

Latitud: -33º 39' 34.8" Longitud: -59º 18' 41.9"

que correspondería a al área quemada un valor radiométrico de 0.170700.

Se determino luego el pixel Nº 2 en un área con vegetación natural sana cercana (no quemada):

Latitud: -33º 44' 43.8"

Longitud: -59º 16' 55.88"

Le corresponde al área de vegetación sana un valor radiométrico de 0.290331. De esta comparación se deduce que el área del pixel Nº 1 es la de un área donde se quemo y no hay vegetación sana.

Bandas 721 en RGB

.

Banda 7

Imagen Nº 11

Banda 2

Banda 1

Imagen Nº 12

Imagen Nº 14

	959	960	961	962	963	
521	0.223774	0.183479	0.0909778	0.0403154	0.0272935	-
522	0.193058	0.162246	0.0757713	0.0219636	0.0213006	
523	0.115120	0.0613204	0.0321582	0.0210950	0.0252821	
524	0.0776323	0.0544546	0.0525777	0.0509877	0.0504819	
525	0.0868637	0.102224	0.104359	0.0879149	0.126222	
526	0.118977	0.221480	0.210040	0.110980	0.163106	
527	0.0797188	0.146068	0.157049	0.127536	0.105267	
528	0.0611188	0.0899836	0.124327	0.171655	0.141181	
529	0.0614031	0.0767848	0.100373	0.120838	0.106600	
530	0.0675240	0.0644741	0.0754173	0.0764460	0.0847921	
531	0.0752220	0.0609495	0.0553642	0.0551783	0.0791702	-

Subset de Matriz 9x21 - Banda 7

	959	960	961	962	963	
521	0.317843	0.347804	0.203302	0.215011	0.153378	
522	0.254557	0.268823	0.231971	0.186410	0.141624	
523	0.169973	0.162428	0.156701	0.120900	0.116511	
524	0.126525	0.124200	0.136799	0.144637	0.146372	
525	0.139530	0.141245	0.146413	0.154302	0.163292	
526	0.172520	0.183815	0.170700	0.160443	0.166820	11
527	0.198394	0.215979	0.190836	0.197195	0.156913	
528	0.181553	0.205372	0.190868	0.180300	0.145120	
529	0.183000	0.197081	0.196833	0.188633	0.161207	
530	0.201493	0.192516	0.201468	0.199927	0.197231	
531	0.213529	0.193086	0.194826	0.194829	0.218065	
			CONTRACTOR OF STREET, ST.			► ET

Subset de Matriz 9x21 - Banda 2

	353	960	961	962	963	
521	0.190677	0.214974	0.131159	0.0721498	0.0464797	
522	0.144899	0.158867	0.104542	0.0621054	0.0475645	
523	0.0091702	0.0783173	0.0623401	0.0520100	0.0543226	
524	0.0840736	0.0773471	0.0654901	0.0639719	0.0824561	
525	0.100299	0.0932580	0.0725275	0.0734711	0.103179	
526	0.0644001	0.0000036	0.0025091	0.0798705	0.100068	110
527	0.0647074	0.0683893	0.0711145	0.0727590	0.0690012	
528	0.0763137	0.0854339	0.0858591	0.0796343	0.0658542	
529	0.0785307	0.0834749	0.0011918	0.0786003	0.0734290	
530	0.0734056	0.0724515	0.0714427	0.0677107	0.0720314	
531	0.0729761	0.0666302	0.0677498	0.0529012	0.0677144	
	1					1/1

Subset de Matriz 9x21 - Banda 1

	561	562	563	564	565	
336	11.2000	10.9541	10.9216	11.1500	11.4091	1
337	11.5268	11.3215	10.8348	10.5458	10.8411	
338	11.4994	11.4029	10.9070	10.5938	10.0456	
339	10.9524	11.1094	11.4634	11.5714	11.7341	
340	11.2036	11.2196	11.5251	11.8243	11.9465	
341	12.0653	11.0414	11.4646	11.4680	11.4429	
342	12.1650	12.2223	11.7569	11.110G	10.6949	1
343	11.7621	12.0350	12.0025	11.1894	10.5116	
344	11.4926	11.5617	11.6016	11.3738	11.2779	
345	11.5405	11.6210	11.1266	10.0496	11.4692	
346	11.3972	11.6085	11.1545	10.2805	11.2779	
	4		10			10

Subset de Matriz 9x21 - Banda 32

Análisis de la Imagen Feng Yun 1D 19/02/ 2006. Hora 7:58 AM.

Nuevamente la multi-temporalidad de Feng Yun 1D permitió analizar el área quemada 24 horas después de localizado el foco, como el área esta compuesta por pastizales y arbustos se puede suponer que el área detectada por la composición de las bandas 621 en RGB alrededor del la latitud y longitud del pixel LandSat es un promedio con una resolución espacial de unos 1100 metros o sea que seria el equivalente a una matriz LandSat de 36x36 pixeles.

Para comparar resultados se analizo la matriz de la Banda 2 (IRC) resulta adecuada para la determinación del estado fenológico de la vegetación.

Se pudo determinar que para le pixel Nº 1 de:

- Latitud: -33º 39' 34.8"
- Longitud: -59º 18' 41.9"

que correspondería a al área quemada un valor radiométrico de 0.0948339.

Se determino luego el pixel Nº 2 en un área con vegetación natural sana:

- Latitud: -33º 44' 43.8"
- Longitud: -59º 16' 55.88" .

que correspondería a al área de vegetación sana un valor radiométrico de 0.109571.

De esta comparación se deduce que el área del pixel Nº 1 es la de un área donde se quemo y no hay vegetación sana.

Debido a la hora de captura de la imagen Feng Yun 1D los valores radiométricos son menores a los debidos.

Bandas 621 en RGB

Imagen Nº 15 Banda 2

Imagen Nº 17

Imagen Nº 16

Imagen Nº 18

Banda 4

Imagen 19

	815	816	817	818	819	
1275	0.0833304	0.0897542	0.0942763	0.0906153	0.0802744	
1276	0.0816011	0.0871880	0.0964304	0.0969657	0.0861796	1054
1277	0.0806823	0.0740388	0.0720000	0.0720624	0.0761055	
1278	0.0849340	0.0745151	0.0723881	0.0787524	0.0741345	
1279	0.0957251	0.0883616	0.0879971	0.0875472	0.0787125	
1280	0.0965040	0.0960067	0.0948339	0.0883279	0.0905573	
1281	0.104000	0.103798	0.100045	0.0942371	0.0968094	
1282	0.104000	0.0987921	0.0967566	0.0960000	0.0998623	
1283	0.0968470	0.0961050	0.100077	0.0989267	0.103598	
1284	0.108673	0.105704	0.107214	0.104017	0.110083	
1285	0.109640	0.104427	0.105317	0.101008	0.0878832	-
			and the second se			

Subset de Matriz 9x21 - Banda 6

	815	816	817	818	819	
1275	0.0471364	0.0459426	0.0436109	0.0423572	0.0434971	
1276	0.0454747	0.0452386	0.0410051	0.0360000	0.0377413	
1277	0.0402770	0.0418476	0.0303751	0.0360000	0.0300529	
1278	0.0360000	0.0360000	0.0360000	0.0360000	0.0060000	
1279	0.0373832	0.0363616	0.0350000	0.0360000	0.0360000	
1280	0.0434960	0.0439933	0.0428339	0.0360000	0.0360000	
1281	0.0360000	0.0362024	0.0391773	0.0400074	0.0060000	18
1282	0.0360000	0.0360000	0.0412160	0.0418712	0.0386444	
1283	0.0360000	0.0360000	0.0431728	0.0440000	0.0440000	
1284	0.0423366	0.0408228	0.0407061	0.0406024	0.0423390	
1205	0.0286264	0.0333253	0.0336301	0.0283476	0.0199658	
	5 a 1		100			- N 🖂

Subset de Matriz 9x21 - Banda 2

	815	815	817	818	813	
1275	0.0360000	0.0360000	0.0360000	0.0360000	0.0060000	
1276	0.0360000	0.0360000	0.0360000	0.0356987	0.0359333	
1277	0.0360000	0.0360000	0.0360000	0.0290704	0.0241507	
1278	0.0360000	0.0360000	0.0360000	0.0359442	0.0349702	
1273	0.0360000	0.0360000	0.0350000	0.0360000	0.0360000	
1280	0.0360000	0.0360000	0.0360000	0.0368000	0.0360000	
1281	0.0360000	0.0360000	0.0360000	0.0360000	0.0060000	
1202	0.0360000	0.0360000	0.0360000	0.0360000	0.0360000	
1283	0.0360000	0.0360000	0.0360000	0.0360000	0.0360000	
1284	0.0360000	0.0360000	0.0360000	0.0360000	0.0365394	
1205	0.0462491	0.0438546	0.0428585	0.0389750	0.0443954	
	1		10			1

Subset de Matriz 9x21 - Banda 1

	815	816	817	818	819	
1275	323.150	323.150	323.076	322.355	322.243	
1276	323.439	323.150	323.150	323.150	323.150	
1277	323.713	323.620	323.294	323.163	323.150	
1278	323.847	324,842	324.239	324,145	324.065	
1279	322.984	323.162	324.150	324.150	324.150	
1280	322.393	323.150	323.189	323.313	323.490	1
1281	322.676	323.150	322.840	322.649	323.150	1
1282	322.161	322,260	322.245	322.710	323.150	
1283	322.150	322.150	322.150	322.986	323.009	
1284	322.150	322.150	322.150	322.929	322.185	
1285	322.150	322.150	322.150	322.155	322.157	
	4		- 12			•E

Subset de Matriz 9x21 - Banda 4

Imagen NOAA-AVHRR 17 19/02/2006. Hora 10:35 AM.

Nuevamente la plataforma NOAA-AVHRR permitió analizar el área quemada 24 horas después de localizado el foco, se puede suponer que el área detectada por la composición de las bandas 321 en RGB alrededor de la latitud y longitud del pixel LandSat es un promedio con resolución espacial de 1100 metros o sea equivalente a una matriz LandSat de 36x36 pixeles.

Para comparar resultados se analizo la matriz de la Banda NOAA 2 (IRC) que consideramos la mas adecuada para la determinación del estado fenológico de la vegetación.

Se pudo determinar que para le pixel N $^{\circ}$ 1 de:

Latitud: -33º 39' 34.8"

Longitud: -59º 18' 41.9"

le correspondería al área quemada un valor radiométrico de 0.125630.

Se determino luego el pixel Nº 2 en un área con vegetación natural sana:

- Latitud: -33º 44' 43.8"
 - Longitud: -59º 16' 55.88"

le correspondería al área de vegetación sana un valor radiométrico de 0.152622. De esta comparación se deduce que el área del pixel Nº1 es la de un área donde se quemo y no hay vegetación sana.

Bandas 321 en RGB

Banda 3

Imagen Nº 21

Imagen Nº 22

Imagen Nº 23

Banda 4 Imagen Nº 24

	559	560	561	562	563	
690	0.126284	0.103634	0.0583291	0.150033	0.204883	
691	0.116319	0.114402	0.0716122	0.0916552	0.198959	18
692	0.107598	0.105605	0.101852	0.0742568	0.122447	
693	0.111073	0.110967	0.116975	0.101510	0.0593231	
694	0.110431	0.113330	0.117537	0.126681	0.116042	
695	0.119590	0.108269	0.107254	0.109614	0.116216	
696	0.115435	0.105554	0.103728	0.106770	0.113235	100
697	0.110262	0.107178	0.105869	0.104966	0.111618	
698	0.114207	0.111955	0.106536	0.103573	0.103345	
699	0.118327	0.117644	0.107299	0.103941	0.100790	
700	0.100139	0.109883	0.108833	0.106781	0.100341	

Subset de Matriz 9x21 - Banda 3

	559	560	561	562	563	
690	0.127270	0.102105	0.0917916	0.142459	0.142131	
691	0.120112	0.136212	0.123346	0.125441	0.145926	
692	0.134830	0.140009	0.153824	0.126647	0.124842	
693	0.124995	0.134050	0.143575	0.110010	0.0011361	
694	0.117574	0.129295	0.120292	0.0822663	0.0998523	
695	0.139371	0.137737	0.125630	0.0971237	0.0063190	
696	0.0860590	0.0925939	0.100911	0.121535	0.114036	12
697	0.100244	0.109807	0.0958326	0.112207	0.139500	
698	0.122066	0.119278	0.0975572	0.100516	0.120776	
699	0.124533	0.121329	0.110461	0.125850	0.124039	
700	0.138008	0.112994	0.121915	0.132319	0.102661	
			and the second second			-

Subset de Matriz 9x21 - Banda 2

	559	560	561	562	563	
690	0.0546144	0.0764501	0.0969138	0.0723922	0.0764649	-
691	0.0567077	0.0599900	0.0881690	0.0807474	0.0796713	
692	0.0548466	0.0535342	0.0657606	0.0839327	0.0091483	
693	0.0584032	0.0546769	0.0560665	0.0752442	0.0971744	
694	0.0624819	0.0592322	0.0600742	0.0602137	0.0657507	
695	0.0609300	0.0543052	0.0565852	0.0617699	0.0618871	100
696	0.0675718	0.0604338	0.0586985	0.0594630	0.0645299	
697	0.0637830	0.0611001	0.0626704	0.0576769	0.0544858	
698	0.0602815	0.0617283	0.0635237	0.0596530	0.0548603	
699	0.0620608	0.0586086	0.0561465	0.0560771	0.0566408	
700	0.0573283	0.0620439	0.0569013	0.0543201	0.0620212	-
	1.4					- NE

Subset de Matriz 9x21 - Banda 1

	503	560	561	562	563	
690	318.124	313.745	312.445	319.994	320.254	
691	315.673	313.776	310.132	315,473	321.536	
692	313.161	314.075	312.192	310.958	317.200	
693	315.628	315.024	316.344	314.345	312.818	
694	317.605	315.403	319.984	324.632	316.741	
695	314.708	312.443	316.401	325.018	326.625	1
696	326.841	322.755	319.496	316.494	320.276	
697	323.962	321.020	323.662	314.491	312.056	
698	317.410	321.276	326.332	319.088	314.100	
699	317.836	316.591	318.832	316.946	318.026	
700	316.287	321.297	316.710	316.103	323.795	
	4		1.00			► □

Subset de Matriz 9x21 - Banda 4

Conclusiones:

El uso de coherente de una constelación de cuatro satélites nos ha permitido una comparación entre las imágenes de mediana resolución LandSat 5 TM y las de menor resolución MO-DIS, Feng Yun y NOAA, pudiéndose determinar que:

1. Se pudo comprobar que el uso de una constelación de satélites ópticos cuando las fechas de revisita lo permiten es optima para el análisis de incendios.

Permitiendo mediante el uso de plataformas de mediana y baja resolución espacial determinar con mas precisión el tamaño de las áreas incendiadas y la posible cuantificación de los daños causados.

2. Se pudo determinar mediante el uso de una imagen LandSat una mayor precisión de los focos de calor durante un incendio y usando imágenes de satélites de menor resolución espacial pero de revisita diaria y horaria como son MODIS. NOAA y Feng Yun, esta suma de información se potencia permitiendo determinar con mejor precisión las áreas afectadas 24 horas después; sin confundir áreas ya carbonizadas con espejos de agua o cualquier otra superficie que lleve a confusión.

3. Quedaría entonces la pregunta como trabajar con esta metodología de constelación de satélites cuando no hay una visita diaria sino una revisita de 16 días de LandSat, para eso recomendamos reemplazar aunque sea a mayores costos por alguno de los satélites que coincidan como ser SPOT, IRS, SAC-C (con 175m de resolución espacial), CBERS, etc.

4. Es de notar que año a año mas países ponen en órbita satélites de mediana resolución en el futuro Nigeria, China, Israel, Francia y Corea tienen o pondrán en un futuro cercano mas satélites con canales en el IRM y de una resolución de alrededor de los 30 metros.

5. Por ultimo si no coincidiere algún satélite comercial con la necesidad de análisis partiendo de pixeles de 30 metros queda siempre la opción de uso de los MODIS de revista diaria pero con un pixel de 500 metros de resolución espacial.

6. Finalmente podemos concluir que el uso de una constelación de satélites ópticos cuan-

do las fechas de revisita lo permiten es optima para el análisis de incendios.

Permitiendo mediante el uso de plataformas de mediana y baja resolución espacial determinar con mas precisión el tamaño de las áreas incendiadas y la posible cuantificación de los daños causados.

REFERENCIAS

- CHUVIECO E., MARTÍN M. P., VENTURA G. (2002). Evaluación de Imágenes Noaa-Avhrr y Terra-Modis para Cartografía Regional de Areas Quemadas.
- [2] PEREIRA, J. M. C. (1999). A comparative evaluation of NOAA-AVHRR vegetation indices for burned surface detection and mapping. IEEE Transactions on Geoscience and Remote Sensing, 37: 217-226.
- [3] Hunt, E. R. y B. N. Rock (1989): Detection of changes in leaf water content using near and middle-infrared reflectances. Remote Sensing of Environment, 30: 43-54.
- [4] Martín, M. P. y E. Chuvieco (1998): Cartografía de grandes incendios forestales en la Península Ibérica a partir de imágenes NOAA-AVHRR. Serie Geográfica, 7: 109-128.
- [5] GEERKEN R., BATIKHA D., CELIS D., DE-PAUW E. (2005). Differentiation of rangeland vegetation and assessment of its status: field investigations and MODIS and SPOT VEGETATION data analyses. International Journal of Remote Sensing, Vol. 26, No. 20, 4499-4526.
- [6] MORISETTE J. T., GIGLIO L., CSIZAR I., JUSTICE C. O. (2005). Validation of the MODIS active fire product over Southern Africa with ASTER data. International Journal of Remote Sensing, Vol. 26, No. 20, 4239-4264.

- [7] CHUVIECO E., CONGALTON R. G. (1989). Application of Remote Sensing and Geographic Information Systems to Forest Fire Hazard Mapping. Remote Sensing of the Environment, Vol. 29, 147-159.
- [8] GRANADOS-RAMIREZ R., REYNA-TRUJI-LLO T., GOMEZ-RODRIGUEZ G. (2004). Analysis of NOAA-AVHRR NDVI images for crops monitoring. International Journal of Remote Sensing, Vol. 25, No. 9, 1615-1627.
- [9] TATESHI, R., EBATA M. (2004). Analysis of phenological change patterns using 1982-2000 Advanced Very High Resolution Radiometer (AVHRR) data. International Journal of Remote Sensing, Vol. 25, No. 12, 2287-2300.
- [10] KUCERA J., YASUOKA Y., DYE D. G. (2005). Creating a forest fire database for the Far East of Asia using NOAA AVHRR observation. International Journal of Remote Sensing, Vol. 26, No. 11, 2423-2439.
- [11] SILVA J. M. N., CADIMA J. F. C. L., PEREI-RA J. M. C., GREGOIRE J. M. (2005). Assessing the feasibility of a global model for multitemporal burned area mapping using SPOT-VEGETATION data. International Journal of Remote Sensing, Vol. 26, No. 12, 2561-2594.
- [12] FENSHOLT R., SANDHOLT I. (2005). Evaluation of MODIS and NOAA AVHRR vegetation indices with in situ measurements in a semi-arid environment. International Journal of Remote Sensing, Vol. 26, No. 12, 2561-2594.