TELEDETECCIÓN - Hacia un mejor entendimiento de la dinámica global y regional Ed. Martin, 2007, ISBN: 978-987-543-126-3

Comparación de Técnicas de Clasificación de cultivos a partir de información Multi E Hyperespectral

Kemerer, Alejandra1a; Mari, Nicolás a; Di Bella, Carlos a y Rebella, César a

(a) Instituto de Clima y Agua, INTA Castelar

Los Reseros y las Cabañas s/n C/P 1712, Castelar, provincia de Buenos Aires, ARGENTINA

RESUMEN

El objetivo de este trabajo fue comparar la calidad del proceso de clasificación para cultivos de soja, secuencia trigo/soja y maíz empleando información Multi (Landsat-TM) e Hiperespectral (Hyperion EO-1). La utilización de técnicas avanzadas de reducción del número de dimensiones sobre imágenes hiperespectrales y posterior clasificación indicaría una leve mejora en las estimaciones de superficie cultivada de algunos cultivos en comparación con las técnicas tradicionales sobre información multiespectral, basándose principalmente en la porción del SWIR del espectro electromagnético.

Palabras claves: Clasificaciones agrícolas, información Multiespectral e Hyperespectral

ABSTRACT

The objective of this work was to compare the quality of different classification techniques for Soybean, Soybean-Wheat sequence and Maize crops, using multi (Landsat-TM image) and hyperspectral (Hyperion EO-1) information. The use of advanced techniques for dimension reduction and classification over hyperspectral images indicates better results in comparison with the traditional techniques based on multispectral information for some crops estimation, using mainly the SWIR information.

Keywords: Crop Classification, Multispectral and Hyperspectral information

Introducción

La estimación de áreas cultivadas a través de técnicas de teledetección para predicciones de rendimiento o evaluaciones de cambios en el uso de la tierra ha cobrado importancia creciente en los últimos años, principalmente asociada a los avances tecnológicos que permiten el procesamiento de grandes volúmenes de información en tiempos relativamente breves.

La estimación de superficies cultivadas es usualmente llevada a cabo a través de clasificaciones no supervisadas y/o supervisadas de imágenes multiespectrales (Guerschman *et al.*, 2003; Van Niel y Mc Vicar, 2004; Báez González *et al.*, 2002). Sin embargo, en algunos casos, para lograr una adecuada discriminación entre los distintos tipos de cubiertas, este tipo de información resulta insuficiente debido a su escasa resolución espectral, incurriendo en la necesidad de utilizar varias imágenes de diferentes fechas.

El lanzamiento del satélite hiperespectral Hyperion EO-1 constituye una alternativa promisoria para mejorar la calidad de las clasificaciones, contando con una mayor resolución espectral y las mismas características espaciales y temporales del satélite Landsat. Sin embargo, se ha planteado el inconveniente de «las grandes dimensiones de datos» como un factor limitante, dado que se requieren técnicas especiales para su procesamiento (Landgrebe, 2002). Estas limitantes están asociadas a que a mayor

¹Contacto autor: Te: +54 46240125

Correo electrónico: akemerer@cnia.inta.gov.ar Copyright: Instituto de Clima y Agua- INTA- Castelar. ISBN

cantidad de dimensiones se requiere un número más elevado de sitios de entrenamiento y de técnicas apropiadas para reducir las dimensiones sin perder información relevante y separabilidad entre clases (Jiménez, 1999).

Si la aplicación de una técnica adecuada para la reducción del número de dimensiones y posterior clasificación de una imagen hiperespectral correspondiente a una sola fecha determina mejores resultados, en cuanto a la calidad del producto final de la clasificación, respecto al obtenido con información multiespectral, entonces existen ventajas prácticas para la utilización de este tipo de información.

La comparación de la calidad del proceso de clasificación a partir de las dos fuentes de información, multi e hiperespectral, permitirá evaluar si existen dichas ventajas para la información hiperespectral.

El objetivo de este trabajo fue comparar la calidad del proceso de clasificación para cultivos de Soja, Trigo / Soja y Maíz utilizando información Multi e Hyperespectral para una única fecha. La disponibilidad de información hiperespectral hasta el momento es por lo general muy limitada. Por tal motivo, para este trabajo sólo se dispuso de una imagen, para una fecha que no pudo ser seleccionada a fin de maximizar la discriminación entre clases.

Materiales y métodos Sitio de estudio

El trabajo fue llevado a cabo en una zona correspondiente al partido de Pergamino, situado al norte de la provincia de Buenos Aires, Argentina (33º 55'S; 60º 33'O). Esta zona presenta características netamente agrícolas y constituye una de las áreas productivas más importantes del país. Los principales cultivos que se encuentran en la zona son cultivos de verano como maíz y soja y secuencias de cultivo de invierno y verano en un mismo año, principalmente trigo/soja.

Materiales

Se utilizaron dos imágenes satelitales del área evaluada, una imagen multiespectral del satélite Landsat-TM de fecha 15/11/2005 y una imagen hiperespectral del satélite Hyperion EO-1 de fecha 11/11/2005. La imagen hiperespectral presenta un tamaño de 29 Km. de largo y 7.9 Km. de ancho por lo que se realizó un recorte de la imagen multiespectral para hacer coincidente el tamaño de ambas (figura 1).

Figura 1. Imagen Hyperion EO-1 (izquierda) e imagen Landsat-TM (derecha) utilizadas en el proceso de clasificación. Los puntos rojos corresponden a los sitios de entrenamiento y los puntos verdes a los sitios control utilizados.

El procesamiento de las imágenes se realizó con ©Erdas 8.4 y la clasificación de la imagen hiperespectral se realizó con el software MultiSpec V2.9 (©Purdue Research Foundation).

Métodos

Cada imagen fue importada y georreferenciada al sistema de proyección Transverse Mercator y Datum WGS84.

Se extrajeron subconjuntos de datos correspondientes a las distintas clases de la imagen hiperespectral y se evaluaron los estadísticos descriptivos de las bandas. Se eliminaron aquellas que presentaron valores anómalos asociados a «ruidos atmosféricos». La imagen final utilizada en la clasificación estuvo formada por un subconjunto de las bandas originales: 8 (426 nm) a 120 (1346 nm), 133 (1347 nm) a 164 (1790 nm) y 187 (2022 nm) a 218 (2335 nm).

Se identificaron 72 sitios a campo, que fueron utilizados como sitios de entrenamiento (73% del total) y como sitios de control (27% del total). Se definieron las clases: Soja, Maíz y la secuencia Trigo/Soja.

A la información obtenida de la imagen hiperespectral se le aplicó una técnica para disminuir el número de dimensiones previo a la clasificación, conocida como DBFE (*Decision Boundary Feature Extraction*). Esta técnica se basa en utilizar los sitios de entrenamiento para obtener componentes principales que discriminan entre información útil y redundante, donde los autovalores generados están directamente relacionados con la utilidad de la componente para discriminar entre clases. Esta información fue posteriormente utilizada para evaluar las bandas con mayor aporte para la discriminación entre clases.

En ambos casos se utilizaron clasificaciones supervisadas a partir de los datos incluidos como sitios de entrenamiento. Las imágenes fueron clasificadas utilizando la técnica de máxima verosimilitud. Esta técnica se basa en la generación de funciones de densidad de probabilidad a partir de los sitios de entrenamiento y la clasificación de los píxeles se realiza en base a la comparación de la probabilidad de pertenencia del píxel a las diferentes clases.

Se determinó la calidad del proceso de clasificación a partir de las dos fuentes de información mediante matrices de confusión.

Resultados

El método empleado para la reducción del número de dimensiones de la información hiperespectral permitió explicar un 94.8% de la varianza total mediante nueve componentes principales.

Para determinar las bandas con mayor peso en el conjunto de componentes principales seleccionadas, se evaluó el porcentaje total de la varianza explicada por banda. Para ello se realizó la sumatoria del producto entre el peso de cada banda en la componente principal y el porcentaje de la varianza explicado por cada componente.

Se identificaron las bandas correspondientes a la porción del Infrarrojo de Onda Corta (SWIR) del espectro electromagnético como las de mayor peso en la discriminación de los diferentes tipos de cubiertas (figura 4). Esta porción del espectro está asociada principalmente a variaciones en el contenido de humedad de la vegetación y su mayor peso puede relacionarse a los diferentes estadios fenológicos en que se encuentran los cultivos evaluados. El cultivo de soja se encuentra en etapas de implantación o vegetativo muy temprano, el maíz en estadios vegetativos avanzados y la secuencia trigo/soja en llenado de grano del trigo, donde los contenidos de humedad pueden ser considerablemente inferiores a los correspondientes a las otras clases evaluadas.

Este resultado determinó que la información de base utilizada posteriormente en el proceso de clasificación difiera sustancialmente entre ambas fuentes de datos, imágenes multi e hiperespectral. Para la imagen hiperespectral el mayor peso estuvo asignado a las bandas correspondientes al SWIR, porción del espectro electromagnético no contenida en la información multiespectral disponible.

Figura 4. Porcentaje de la varianza explicado por las bandas con mayor peso en la reducción del número de dimensiones.

Los resultados globales en cuanto a calidad del proceso de clasificación han sido elevados para las dos fuentes de información considerando las limitantes asociadas a la fecha disponible. Existe una mejora en el resultado obtenido a partir de la información hiperespectral (88.5%) respecto a la multiespectral (85.5%), pero su magnitud no es muy importante (Figura 2). Dicha diferencia podría ser de magnitud superior si la información utilizada correspondiera a una imagen de fecha óptima, donde la señal espectral de los distintos tipos de cultivos se maximice.

Para ambas fuentes de información, multi e hiperespectral, las características de los resultados finales obtenidos de la clasificación han sido similares. En los dos casos los píxeles correspondientes a maíz y la secuencia trigo/ soja han sido correctamente asignadas a sus respectivas clases, sin presentar errores de omisión. En cambio los correspondientes a la soja han sido erróneamente asignados a la clase maíz, con un 17.5% de error de omisión para la información multiespectral (82.5% exactitud del productor) y un 14% para la información hiperespectral (86% exactitud del productor) (tablas 1 y 2).

Figura 2. Imágenes clasificadas Hyperion EO-1 (izquierda) y Landsat-TM (derecha).

Tabla 1. Resultados de la clasificación mediante técnicas de máxima verosimilitud de información multiespectral obtenida del satélite Landsat-TM.

Clases	Exac	N°	Nº píxeles en las clases				
	prod	pixeles	Maíz	Soja	T/S		
Maíz	100	200	200	0	0		
Soja	82.5	3080	397	2542	0		
T/S	100	446	0	0	446		
Total		3726	597	2542	446		
Exactitud usuario			33.5	100	100		
Calidad global: 3188/3726 = 85.5							

 Tabla 2. Resultados de la clasificación mediante DBFE de información hiperespectral obtenida del satélite Hyerion EO-1

Clases	Exac	N° N° píxeles en las clases					
	prod	pixeles	Maíz	Soja	T/S		
Maíz	100	281	281	0	0		
Soja	86	2564	358	2206	0		
T/S	100	283	0	0	283		
Total		3128	639	2206	283		
Exactitud usuario			44	100	100		
Calidad global: 2270/3128 = 88.5							

La asignación errónea de los píxeles de soja a la clase maíz se traduce, a su vez, en una disminución de la exactitud del usuario para dicha clase, que alcanza valores de 33.5% y 44% para la información multi e hiperespectral respectivamente.

La confusión en el proceso de clasificación en la asignación de píxeles de soja a la clase maíz puede estar asociada a diferencias en el desarrollo de los cultivos para la fecha de la imagen. La comparación de la variabilidad por banda de la información multiespectral en los lotes utilizados como sitios de entrenamiento informa acerca de las características de los cultivos (figura 3).

Figura 3. Coeficiente de variación por banda de los sitios de entrenamiento para la imagen Landsat-TM

Para esa fecha el cultivo de maíz se encuentra en estadios vegetativos, que pueden estar asociados a diferentes grados de coberturas dependiendo del sistema de manejo empleado, en especial en cuanto al distanciamiento entre surcos, densidad de siembra y fecha de siembra. Esas diferencias en cobertura determinan aportes variables de la reflectancia del suelo v/ o rastrojo que modifican la firma espectral en diferente grado. La secuencia trigo/soja se encuentra básicamente en etapas de llenado de grano para el trigo, caracterizados por una cobertura completa con escaso a nulo aporte de la reflectancia del suelo, lo que determina que sea la clase con menor coeficiente de variación en las distintas bandas (figura 3). En cuanto a la soja en esa fecha se está implantando o en estadios vegetativos tempranos y en todos los casos la firma espectral se caracteriza por un aporte significativo de la reflectancia del suelo y/o rastrojo, con coeficientes de variación elevados en todas las bandas (figura 3). Esto puede determinar que se asignen erróneamente píxeles de soja a la clase maíz, cuando en el cultivo de soja existe cierta cobertura, que puede ser confundida con maíz donde aún existen aportes de reflectancia del suelo.

Como se mencionara previamente, estos resultados podrían mejorar sustancialmente si la fecha utilizada permitiría maximizar la señal espectral y así aumentar la capacidad de discriminación con una menor probabilidad de asignar erróneamente los píxeles.

Estos resultados no son contundentes pero plantean diferencias entre ambas fuentes de datos, principalmente en cuanto al tipo de información utilizada en la clasificación, que se basó en la porción correspondiente al SWIR para la imagen hiperespectral, no contenida en la multiespectral, y en menor medida por una mejora en la calidad del resultado final de la clasificación a partir de la información hiperespectral.

Conclusiones

La utilización de técnicas avanzadas de reducción del número de dimensiones sobre imágenes hiperespectrales y posterior clasificación determina una leve mejora en el resultado de las clasificaciones para cultivos de soja y maíz en comparación con las técnicas tradicionales sobre información multiespectral.

La información utilizada en el proceso de clasificación de datos hiperespectrales difiere sustancialmente de la utilizada con datos multiespectrales, ya que se basa principalmente en la porción del infrarrojo cercano de onda corta (SWIR), no incluida en la información multiespectral. Éste resultado indicaría la necesidad de explorar en detalle las propiedades del SWIR para la clasificación de cultivos, particularmente sobre aquellas coberturas que presenten mayores dificultades para ser clasificadas correctamente.

Agradecimientos

Queremos agradecer especialmente a la AUS Adriana Ferreyra, Ing Agr Carlos Pecorari e Ing Agr Andres Llovet de la EEA INTA Pergamino por su colaboración en tareas de campo y por facilitarnos información para el desarrollo del trabajo. Asimismo, queremos agradecer a la CONAE (Comisión Nacional de Actividades Espaciales), y especialmente a la Lic. Ida Nollmann, por la provisión de imágenes Hyperion.

Este trabajo fue financiado por los fondos del Proyecto Específico Desarrollo Metodológico y aplicaciones de Sensores Remotos a la Producción Agropecuaria y Forestal (AERN4642) y al proyecto de Geomática Aplicada del INTA (AERN4).

Referencias

- Baez-Gonzalez, A.; Chen, P.; Tiscareño-López, M.; Srinivasan, R. 2002. Using Satellite and Field Data with Crop Growth Modeling to Monitor and Estimate Corn Yield in Mexico. Crop Science. Vol. 42:1943–1949.
- Guerschman, J.; Paruelo, J.;Di Bella, C.; Giallorenzi, M.; Pacin, F. 2003. Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data. Int. Journal of Remote Sensing, Vol 24, 17: 3381– 3402

- Jimenez, L.; Landgrebe, D. 1999. Hyperspectral Data Analysis and Supervised Feature Reduction Via Projection Pursuit. IEEE Transactions on Geoscience and Remote Sensing, Vol 37, 6: 2653-2667
- Landgrebe, D. Hyperspectral Image Data Analysis as a High Dimensional Signal Processing Problem. 2002. IEEE Signal Processing Magazine. Vol 19, 1: 17-28
- Van Niel, T.; McVicar, T. Determining temporal windows for crop discrimination with remote sensing: a case study in south-eastern Australia. 2004. Computers and Electronics in Agriculture. Vol 45: 91–108