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RESUMEN 
En este artículo se presenta un sistema para la 
clasificación de imágenes SAR polarimétricas. Este 
sistema utiliza información contextual a través de 
un modelo Markoviano para las clases, además de 
modelos estadísticos para los datos. El sistema fue 
desarrollado pensando en el usuario y, por lo tanto, 
está íntegramente basado en interfaces gráficas. 
Toda vez que el usuario trata de activar una opera-
ción inválida, el sistema le informa la secuencia 
correcta de pasos. La funcionalidad del sistema se 
verifica clasificando áreas de cultivo, en una ima-
gen SIR-C/X-SAR. 
 
PALABRAS CLAVE: Clasificación, Contexto, 
Estadística, Radar de apertura sintética. 
 

 ABSTRACT 
This article presents a system for polarimetric SAR 
image classification. This system uses contextual 
information through a Markovian model for the 
classes, besides a statistical model for the data. It is 
developed with the user in mind and, therefore, it is 
solely based on graphic user interfaces. The user is 
prompted with the correct sequence of steps when-
ever an invalid option is invoked. The functionality 
of the system is checked classifying a SIR-C/X-
SAR image, where mainly crops are observed. 
 
 
 
KEY WORDS: Classification, Context, Synthetic 
aperture radar, Statistics. 
 

 
INTRODUCCION 

The intensification of remote sensing studies in 
the field of Synthetic Aperture Radar (SAR) imag-
ing sensors is leading towards a better understand-
ing of the scattering mechanisms of terrestrial 
targets in the microwaves spectrum. Besides this, it 
has led to more dependable applications of SAR 
imagery and products to geology, cartography, and 
other fields of knowledge. 

One of the most useful products of digital im-
ages is the result of automatic or semiautomatic 
data classification. This product is becoming more 
and more precise since the Gaussian hypothesis 
was weakened, and since better suited distributions 
for SAR data were incorporated into the process 
(Nezry et al., 1996; Frery et al., 1997a). 

In Vieira (1996) this improvement becomes evi-
dent: it is shown that for monospectral SAR data, 
the simultaneous use of proper distribution for 
each class, along with contextual information, 
leads to better classifications than those obtained 
either by Gaussian fitting and/or by pointwise 
classification. On the other hand, the use of mono-
spectral SAR data has its limitations. 

The number of studies and applications involv-
ing polarimetric SAR data is increasing steadily. 
These data are formed by sending and receiving 

the electromagnetic signal in both horizontal and 
vertical polarisation and, thus, they mar carry a 
larger amount of information than that available 
from a single component. Though there is cur-
rently no sensor operating in different bands and 
polarisations, studies in this area are useful. 

Several works are devoted to the statistical char-
acterisation of single-look polarimetric SAR data. 
The reader is referred to DeGrandi et al. (1992), 
Kong, (1988), Lim et al. (1989), Quegan and Rho-
des (1995), Yueh et al. (1989), to name a few. 

The potential of multilook polarimetric data, 
where each value is the mean over several observa-
tions, is notorious as presented in Lee and GcuDes 
(1994) and in Lee et al. (1995), for instance. The 
statistical properties of this kind of data have not 
been fully exploited yet They have the advantage 
of exhibiting a speckle noise reduction as well as 
data reduction. The disadvantage is the resolution 
loss. 

Given the potentiality of polarimetric data for 
image classification, there is a need for systems 
that use all the information of polarimetric data, in 
a manner that the user can handle it easily without 
knowing too much about the complexity of the 
underlying theory. The authors of this paper have 
no knowledge of such a system implemented in 
commercial software. 
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STATISTICAL PROPERTIES OF 
POLARIMETRIC SAR DATA 

The objective this paper is to present a system 
for multilook polarimetric SAR image classifica-
tion which was developed to assess the potential of 
this kind of data. The system is strongly based on 
the statistical properties of the data, and it uses a 
Maximum Likelihood (ML) classification as the 
initial configuration for a contextual Markovian 
classification technique: the Iterated Conditional 
Modes (ICM for short), presented in Vieira (1996). 
The system present in here allows the analysis of 
intensity, phase difference, ratio of intensities and 
intensity-phase data. These data formats are de-
rived from multilook polarimetric SAR imagery, 
and their distributional properties are here recalled. 
The system is based on graphic user interfaces, and 
was developed as an extension of the ENVI (Envi-
ronment for Visualizing Images) image processing 
system (ENVI, 1996). 

Data obtained with coherent illumination, as is 
the case of SAR data, are corrupted by a signal-
dependent noise called speckle. A usual model for 
the signal and this noise is the Multiplicative 
Model. It states that, under certain conditions (Tur 
et al., 1982) the observed value in every pixel is 
the outcome of the random variable Z = XY, where 
X is the random variable that models the backscat-
ter and Y is the one that models the speckle noise, 
and fuese last two variables are independent. 

Statistical models for multilook polarimetric data 
are derived from the covariance matrix, which 
exhibit a complex Wishart distribution (Lee and 
Grunes, 1992; Du and Lee, 1996). 

Ullaby and Elachi (1990) show that, for satellites 
that transmit and receive through the same antenna 
(which is the usual case), it is possible to suppose 
that SHV = SYH Therefore, the matrix presented in 
equation (1) can be reduced, without loss of infor-
mation to 

POLARIMETRIC SAR SYSTEMS 
Conventional SAR systems operate in a single 

frequency, with a single antenna of fixed polarisa-
tion for both the transmitted and received signals. 
Usually only the intensity or the amplitude data is 
supplied to the user and, as a consequence, any 
information carried in the phase of the complex 
electromagnetic signal is lost. 
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When polarimetric SAR sensors are used, the 
full complex signal is recorded and, thus, the re-
turn in all the configurations (HH, H~ VH and VV) 
are fully recorded (intensities or amplitudes and 
relative phases). In order to accomplish this for 
every resolution cell the complex scattering ma-
trix, denoted as 

 
where Si , 1 ≤ i ≤ 3 denotes SHH , SHV  and SVV in 
any convenient order. 
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When the number of elementary scatterers (de-
noted N in equation (2)) is very large, it can be 
assumed that the vector Z in equation (3) obeys a 
multivariate complex Gaussian distribution 
(Goodman, 1963). This is true if the backscatter X 
is constant, independently of the imaged area, 
since the speckle Y is assumed to obey a 
mu1tivariate complex Gaussian law. 

 
is measured. Subscripts p, q ∈ {H, V} denote the 

transmission and reception components of the 
signal, respectively, and elements Spq are called 
complex scattering amplitude. Sarabandi (1992) 
shows that 
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In this work mu1tilook data are considered and, 
in order to derive their distributional properties, 
vector Z in equation (3) will be, thus, considered 
the k-th single-look observation and denoted as 
Z(k). A fixed number, n, of independent outcomes 
of Z are averaged to form the n-1ooks covariance 
matrix, given by (Lee et al., 1995) 
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where N is the number of scatterers of each reso-

lution element, each having amplitude | n
pqs | d 

phase n
pqφ . 

 
where Z*(k)T denotes the transposed conjugate 

of Z(k). 
an

 
The advantage of working with the covariance 

matrix, defined as A = nZ(n), is that it exhibits a 
multivariate complex Wishart distribution 
(Srivastava, 1963). Its density is given by 

Other ways of representing polarimetric data are 
the Stokes matrix, the modified Stokes matrix, the 
covariance matrix and the Mueller matrix (Ulaby 
and Elachi, 1990). 
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=  (5) where Zβ is a normalising constant, 1A is the in-

dicatar function of the set A, and (s,t) denotes that 
co-ordinates s and t are neighbours, then it is said 
that M obeys the Potts-Strauss model with parame-
ter β. It is important to notice that for every β> 0 
this model favours those configurations that ex-
hibit clusters of same-class pixels. 

 
where q denotes the dimension of the vector Z, 

K(n,q) = π q(q-l)/2 Γ(n)...Γ(n-q + 1), Tr denotes the 
trace of the matrix, C = E[ZZ*r], and Γ is the Eu1er 
Garnma function. Using equation (5) it is possible 
to derive the densities for situations of particular 
interest, as presented in Lee et al. (1995). They are 
addressed here for a better understanding of the 
implemented classifiers. The following situations 
were implemented in the system here considered: a 
pair of intensities, phase difference, ratio of inten-
sities and pair intensity-phase. 

Once defined this distribution, it can be used as 
the prior for the classes in a Bayesian framework. 
Every class ξl ∈ Ξ, 1≤ i ≤ l, will be associated to a 
certain type of target. 

For a discussion of the possible ways to obtain 
estimators of η (the true map) given the data, the 

reader is referred to Besag (1989). The system 
here presented implements one of fuese estimation 
techDiques: the Iterated Conditional Modes 
(ICM). CONTEXT, THE POTTS-STRAUSS 

MODEL AND THE ICM ALGORITHM Assuming that the classes can be described by 
the Potts-Strauss model, the problem of classifica-
tion consists of finding an estimator of the true 
class configurationη given the data. It will also be 
assumed that the distribution of the data given the 
classes is known, after the training steps required 
by the ML procedure. 

The use of Markovian distributions (also known 
as Markov random fie1ds) for the parametric mod-
elling of context dates back to the 70s, but their 
use became widespread after the work by Geman 
and Geman (1984). 

Markov random fields, are a mu1tidimensional 
extension of the index of Markov chains, where 
the concept of future given past is transformed into 
spatial conditioning. The interest in this kind of 
distributions dates back to the beginning of the 
century, since the well-know Ising model for mag-
netism is one of its most famous particular cases. 
The reader is referred to (Besag, 1989) for more 
information about their use in image analysis. For 
the purpose of this paper, it will suffice to define 
the underlying distribution for the classes: the 
Potts-Strauss modelo 

The ICM algorithm consists of the iterative im-
provement of the classification of the co-ordinates, 
using the information of its return and the classes 
of its neighbouring sites. Denotingη(k) the avail-
able classification after the k-th iteration, this clas-
sification will be improved replacing the class 
observed in every site s by the class ξ' ∈ Ξ that 
maximises theexpression 

 
)( )': t{# exp )(z f)'L( tss' ξ=ξ∂∈β=ξ ξ  (7) 

 
Denote η=[ηs, s ∈ S] a particular configuration 

of classes, with S the set of co-ordinates of the 
image. Any η will be regarded as the outcome of 
the random variable defined as W: Ω→Ξs, where 
Ω. is a sample space and Ξ={ξ1 – ξ2} is the set of 
all possible classes for each co-ordinate, and Ξs is 
the set of all possible maps (completely classified 
images). 

where fξ ,is the density associated to class ξ'and 
δs is the set of neighbouring co-ordinates around 
site s. The relevant densities for the problem at 
hand are presented in the next section. The process 
iterates until there is evidence of convergence. 

Equation (7) is the conditional likelihood of 
class ξ' given the data and the neighbouring 
classes. The first term alone would have yielded to 
the ML classification scheme, while the second 
alone leads to the mode filter (the replacement of 
the current class by the most frequently observed 
one in its neighbourhood). 

Markov random fields are specifications of 
probabilities to every map η=ΞS, satisfying some 
mild conditions. These probabilities can be chosen 
in arder to model spatial interaction. This model-
ling would be attained by associating higher 
(lower, resp.) probability values to more (less, 
resp.) ordered -smooth, less varyingmaps. For the 
definition of the techniques embedded in the sys-
tem here considered, fuese probabilities depend on 
η and on a single real parameter β. 

EQUIVALENT NUMBER OF LOOKS 
ESTIMATION 

The equivalent number of looks n is one of the 
parameters of the distributions arising from the 
multiplicative modelo This parameter could be 
estimated only once for the whole image, using 
samples selected ayer homogeneous region. This 
means, for linear detection (amplitude data) that 
fuese should be samples from Γ1/2 distributions 
(Frery et al., 1997a). 

If the random variable M (for "map") obeys the 
distribution given by  
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The interactive procedure implemented to esti-
mate the equivalent number of looks here de-
scribed was proposed in Vieira (1996). 

ICM intensity bivariate 
This option applies the ML and ICM classifica-

tions to a pair of intensity images, either two po-
larimetric components or the result of two pas-
sages of the same monospectral sensor (such as 
JERS-l, ERS-l, etc.). 

Several samples may be selected, and χ2 good-
ness-of-fit test for the Γ1/2 distribution is performed 
for each sample. The sample with low likelihood 
of belonging to the Γ1/2 distribution (low p-values) 
may be discarded, and the final estímate is com-
puted as the mean of the remaining estimated val-
ues. The user has the option of the decorrelating 
the samples (i.e. of resampling in lines and col-
umns) by defining the horizontal and vertical lags. 
To help the user in this task, the system calculates 
the autocorrelation function of the data. The inter-
face s for the calculating the autocorrelation func-
tion of samples for the χ2 test, and the estimation 
of n, are shown in Figure 1, Figure 2 and Figure 3, 
respectively. 

After the input of the initial data the interface 
shown in Figure 4 is presented. It exhibits the 2-D 
histogram of the pair of bands, along with the 2-D 
estimated density, both in perspective and in con-
tour plot. The estimated parameters are presented 
at the bottom of the plots. 

As every interface presented in this work, that 
presented in Figure 4 is fully interactive with the 
user The user can specify the interval the plots will 
be drawn, any desirable rotation, the number of 
contour levels to be used, etc. This feature greatly 
stimulates the interaction of the user with the data. 
The input values affect all the sub-windows, since 
they are connected in order to help the visualisa-
tion. 

THE SYSTEM 
The system behaves as an extension of fue ENVI 

v. 2.5 system, and it uses its native functions and 
others from IDL (lnteractive Data Language). In 
this inanner, several functions such as those for 
data management, processing and analysis were 
reused. 

This interface has to be used for every class of 
interest. Once this is performed, the ML classifica-
tion is performed, and the interface shown in Fig-
ure 5 is presented to the user. The user can interac-
tively choose the classes for which the estimated 
densities are presented (in perspective and as a 
contour plot). The user can specify the viewpoint 
and number of (evenly spaced) contour levels. 
Each class is associated to an unique colour. 

Both classifications implemented are supervised 
and, thus, require the specification of training sets 
for parameter estimation. These sets are informed 
through regions of interest, previously defined by 
the used with ENVI utilities. The equivalent num-
ber of looks (n in equations (4) and (5)) is also an 
input parameter; it can be estimated within the 
system presented in Vieira (1996) and described in 
the previous section. 

The ML classification is produced, and used as 
initial configuration by the ICM algorithm. This 
iterative technique stops according to the number 
of co-ordinates whose classification changes from 
one iteration to the next (Vieira, 1996). 

Denoting as R1, R2 the pair of intensities, their 
joint density under the model characterised by 
equation (5) is 

The ICM classification method is a contextual 
procedure that, in order to classify every pixel, 
uses both the observed value in the corresponding 
coordinate and the classification of the surrounding 
sites. In order to incorporate this context within a 
statistical framework, the Potts-Strauss is used for 
the classes. 
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The system here presented uses an inference 
technique called pseudolikelihood, in order to 
estimate the required parameter of the Markovian 
model (β in equation (6)). This technique alleviates 
the user from the need of choosing parameters in a 
trial-and-error basis, a major drawback of most 
advanced classification algorithms. Details are 
available in Vieira (1996), Vieira et al. (1997) and 
in Frery et al. (1997b). The current implementation 
uses any existing classification as starting point, 
being the ML the default. 

 
where H11 = E[R1] and H22 = E[R2], In-1 denotes 

the modified Bessel function of order n-1, and 
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The parameter |ρc| can be estimated by selecting 

a sample of size m and computing 
 

The following subsections describe the function-
ality of the system, in every case for n looks inten-
sity data. The densities and parameter estimators 
are as presented in Lee et al. (1995). ∑∑
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Though, from the theoretical point of view the 
denominator in R1/R2 will take positive values 
with probability 1, the fact of dealing with discrete 
data imposes the use of a "safe" ratio. The system 
works with R1/max{R2,l}, which eliminates the 
possibilit y of an overflow. 

WhereR1 andR2 denote the sample means of R1 
and R2, respectively. 

ICM phase difference 
This option applies the ML and ICM classifica-

tions to Ψ, the difference between the phases of 
two complex images. These images are derived 
from two components Si(k) and Sj(k) of single-look 
images (equation (3)) in the following manner: 

Intensity and phase ICM SAR 
This option calculates both the ML and ICM 

classification, using a multilook intensity image R1 
and a phase difference ψ. The input data for this 
processing are two multilook bands Ri and Rj, and 
the corresponding multilook complex image Rij

(n) 
(see equation (8)). 
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The rest of the process is as presented in previ-
ous sections, namely the same as for classification 
using a pair of intensities. 

 
where ℜ and ℑ denote, respectively, real and 

imaginary parts. 
In order to derive the joint density of RI  and ψ, 
intensity and phase difference data obtained from 
two components Si and Sj of the scattering ma-
trix, consider the image 

After the required parameters have been intro-
duced, the interface shown in Figure 6 is pre-
sented, with the histogram of the data, the fitted 
density and estimated phase difference parameters. 
When every class has been checked with this inter-
face, Figure 7 is shown. This interface presents the 
estimated densities of the phase difference for 
every considered class, allowing the visual as-
sessment of their separability throughout this fea-
ture. 

21222

12

4
12

/)n(
c

nn
c)n(

]w||)w)[(n()n(
w)w()||)(n(*

)w(p
+

−

ρτ−+τΓΓ

+τρ−Γτ
=  

 
The joint density of B1 and ψ is given by 
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The density of the quantity defined above, under 
the aforementioned model, is given by 
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where -π < ψ ≤ π, b=|ρc|cos(ψ-θ), θ is the phase 

of the complex coefficient of correlation and 
F(n,1;1/2;β2)=2F1(n,1;1/2;β2) is the Gaussian hy-
pergeometric function. In the system this function 
was implemented based on the algorithm described 
in Press et al. (1988), for any n > 0. 

 
where w = R1 /R2 and τ = H11 / H22 
Though, from the theoretical point of view the 

denominator in R1/R2 will take positive values 
with probability 1, the fact of dealing with discrete 
data imposes the use of a "safe" ratio. The system 
works with R1/max{R2,l}, which eliminates the 
possibilit y of an overflow. 

ICM ratio of intensities 
Both the ML and ICM classification are ob-

tained, derived from the ratio between two multi-
look in tensity bands, i.e., using data of the form 
Ri/Rj. Intensity and phase ICM SAR 

Analogously to the previous situation, namely 
for the classification using phase difference, after 
the required inputs the histogram, fitted densities 
and estimated parameters are shown for every 
class. Once the fittings have been checked for 
every class, the whole set of fitted densities is 
shown. 

This option calculates both the ML and ICM 
classification, using a multilook intensity image R1 
and a phase difference ψ. The input data for this 
processing are two multilook bands Ri and Rj, and 
the corresponding multilook complex image Rij

(n) 
(see equation (8)). 

The rest of the process is as presented in previ-
ous sections, namely the same as for classification 
using a pair of intensities. 

The density that characterises this data is 
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=  In order to derive the joint density of RI  and ψ, 

intensity and phase difference data obtained from 
two components Si and Sj of the scattering ma-
trix, consider the image 

 
where w = R1 /R2 and τ = H11 / H22 
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The quantitative comparison of results, when 
bivariate intensity data are used, is presented in 
Table 4. The best classification achieved (namely 
for the L HVVV data set) is highlighted. Similar 
results, obtained with phase difference, with the 
ratio of intensities and with the pair intensity-phase 
are presented in Table 5, Table 6 and Table 7, 
respectively. In all these tables the best results are 
highlighted. 

where 1F1  is the confluent hypergeometric func-
tion. 

In the system this function was implemented by 
means of an adaptation of the Gaussian hyper-
geometric function algorithm described in the 
Press et al. (1988). 

CASE STUDY 
The analysis of these tables shows that classifi-

cations obtained with phase difference C HH-HV 
data leads to the worst overall results, for both ML 
and ICM methods. These two classifications are 
shown in Figure 9. 

In order to assess the information content of po-
larimetric SAR data in crops areas, a SIR-C/X-SAR 
image was analysed. 

As presented in the previous section, the system 
offers a wide variety of options for input data. All 
these possibilities were tested, namely bivariate 
intensity, phase difference, ratio of intensities and 
the pair intensity-phase. For each of fuese tour 
options the ML classification was obtained and 
used as initial configuration for the ICM algo-
rithm. 

It is also noticeable that phase difference data 
from HH-HV and HVVV polarisations, from both 
L and C bands, do not carry useful information 
about the studied areas and can, therefore, be dis-
carded from the Test of the comparisons. Classifi-
cations using these data sets were assessed in Ta-
ble 5, since the system allows it. 

Taking into account the results obtained with the 
other data sets for L band, it can be concluded that 

Data and preliminary analysis 
The main parameters of the space shuttle image 

under study are presented in Table 1. The central 
co-ordinates of the area are 09(07' S, 40(18' W. 
The imaged area corresponds to an irrigated region 
where several types of crops are observed. 

1. The worst ML classification was obtained 
with the ratio of HHVV intensities, and the 
best with the HVVV pair of intensity data 
(see Figure 10). The improvement from the 
worst to the best ML classification is, in this 
case, of 475,77%. Figure 8 presents two compositions of the data 

set under study. To the left (right, resp.) the red, 
green and blue channels were associated to the L 
(C resp.) band and polarisations HH, HV and VV. 
This images also present the test (right) and train-
ing (left) sets. 

2. The worst ICM classification was obtained 
when using ratio of HH-HV intensities, and 
the best was attained when the initial con-
figuration was the best ML classification, 
i.e., when the HV-VV pair of intensity data 
was used (Figure 11). The improvement, in 
this case, is of314,74%. 

The classes analysed in this work are presented 
in Table 2, where their respective colour keys (the 
colours with which they will be represented in the 
classifications), number of training and test sam-
ples and sizes of these samples are also shown. 
These classes are river (that will be depicted in 
blue), a steppe vegetation type called caatinga 
(green), prepared soil (red), soy (magenta), tillage 
(cyan) and corn (yellow). 

Discarding the HH-HV and HVVV phase differ-
ence data sets, and considering C band data, it can 
be concluded that 

1. The worst ML classification was obtained 
with the ratio of HHVV intensities, and the 
best with the HV-HV pair of intensity data. 
The obtained improvement from the worst to 
the best ML classification is of 523,22%. Though, as presented in Table 1, the nominal 

number of looks is 4.7854018, the estimated quan-
tity amounts to 2.97479. This value is the mean of 
the equivalent number of looks observed in each 
component (see Table 3). The estimation of this 
quantity was performed using samples as large as 
possible, and taken over homogeneous areas. Be-
fore using these samples, they were submitted to 
χ2 goodness of fit test, and they all passed at the 1 
% level of significance the hypothesis of being 
homogeneous areas. 

2. The worst ICM classification was obtained 
when using ratio of HHVV intensities, and 
the best was attained when the initial con-
figuration was the best ML classification, 
i.e., when the HH-HV pair of intensity data 
was used (Figure 12). The improvement, in 
this case, is of 365,42%. 

Comparing the best ML and ICM results, for 
each band, it can be concluded that ICM improves 
28,14% ML the classification in L band, and 
20,38% in C band. It is interesting to compare ML 
and ICM results, since the latter is an improved 
result that used the former as starting point. The 
improvement is notorious, both from the qualita-
tive point of view (regions are smoother and better 
defined) and from the quantitative one. 

Comparison of classifications 
All possible combinations of data for same band 

were used to generate classifications, as described 
in Correia (1998). These precision of these results 
was assessed with the use of the estimated Kappa 
( k̂ ) coefficient of agreement and its sample vari-
ance ( s ) over test areas (Landis and Koch, 1977). 2

k

Though the aforementioned improvement is 
welcome in every application, it is not as dramatic 
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as that obtained in Frery et al. (1997b) and Vieira 
(1996). In that work improvements of the order of 
500% were obtained when comparing ML and 
ICM classifications. This might be due to, among 
other reasons, the fact that in those works a single 
component amplitude multilook data were used, 
which conveys les s information per pixel than that 
carried by polarimetric images. 

The analysis of the confusion matrices (not 
shown here, but available. through the system) 
shows that, using the ICM algorithm in all cases, 
the best results are 

l. For the class River, the pair intensity HH-HV 
band C yielded to a 100% of correctly classi-
fied pixels (Figure 12, right). 

2. The class Caatinga was best classified (98% 
of correctly labelled pixels) with the pair in-
tensity HVVV band C (Figure 13, left). 

3. Phase difference between HHVV band C data 
yielded to the best Soil classification (94%, 
Figure 12 left). 

4. The Soy class was best classified through the 
use of intensity HH-VV pair, from L band 
(Figure 13, right). 

5. The pair phase-intensity, from HHVV L band, 
yielded to the best Tillage classification 
(95%, Figure 14). 

6. The best (86%) Corn classification was ob-
tained when the intensity par HV-VV data set 
from L band was used (Figure 10, right). 

These results show that the overall performance 
criterion, namely the estimated Kappa ( k̂ ) coeffi-
cient of agreement, mar not inform how well indi-
vidual classes are classified. Besides this, these 
results show the importance full polarimetric im-
ages, since the information they convey is rather 
specialised and in concentrated in different data 
sets for different classes. 

CONCLUSIONS AND FUTURE 
WORK 

The system here presented allowed the compari-
son of classifications using four types of multilook 
polarimetric data: bivariate intensity, phase differ-
ence, ratio of intensities and the pair intensity-
phase. 

This system is user friendly and goal driven, and 
it proved being easy to use. The users is only re-
quired to know the basic ideas of maximum likeli-
hood classification, in order to be able to produce 
improved results based on the Markovian model-
ling of classes and pseudolikehood estimation. 

The intense use of graphic interfaces eases the 
modelling and understanding of data, a central 
issue in SAR image analysis. 

A SIR-C/X-SAR image of mainly crops was 
chosen as case study. Training and test samples 
were chosen and analysed within the system, and 
all possible data configurations for each band were 
classified. The best (worst) ICM overall classifica-

tion was obtained with the band L, HVVV inten-
sity pair (band C, HH-HV phase difference, resp.) 
data. 

Using the ICM algorithm yields to classifica-
tions not worse than the initial one. Since in this 
study all initial classifications were obtained by the 
ML method, improvements from this pointwise 
classification technique were expected. In fact, as 
presented, significant improvements were achieved 
at the mere expense of CPU time. 

The version of the system here presented only 
allows the use of distributions associated to homo-
geneous regions. The authors are currently upgrad-
ing the functionality of the procedures, in order to 
allow the use of other distributions, more suited to 
heterogeneous and extremely heterogeneous ob-
servations. 
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Image identifier P-11534 
Acquisition date April 14th 1994 
Size o fue considered image  407 x 370 pixels 
Frequency L (1.254 GHz) and C(5.304G Hz) 
Polarisation HH,HV, WandVH 
Incidence angle 49.496° 
Platform height 216.14 km 
Orbit direction Descending 
Type of product Multilook Complex (MLC) 
Nominal number of looks 4.7854018 
Geometric representation Ground range 
Pixel spacing 12.5m in e and 12.5m in azimuth 
 
Table 1. SIR-C/X-SAR image main parameters 

 
 

Training samples Test samples 
Classes Colour Number Pixels Number Pixels 
River Blue 2 4949 2 3844 

Caatinga Green 5 5177 5 3585 
Prepared soil Red 1 3221 1 2101 

Soy Magenta 2 2609 2 2128 
Tillage Cyan 1 635 1 360 
Corn Yellow 2 3505 2 1946 

 
Table 2. Classes of interest, colour keys. training and test samples  
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 Band 

Polarisation L C 
HH 2.6688 2.6713 
HV 3.1836 2.9723 
W 3.5340 2.8188 

Mean 2.97479 
 

Table 3. Estimated equivalent numbert of looks in all the avail-
able bands and polarisations, and overall mean 

 
 

k̂  Variance (x 10-3) Input data 
(band - polarisation) ML ICM ML ICM 

L HH-HV 0.596980 0.710471 2.38412 1.99384 
L HH-VV 0.575008 0.694241 2.48444 2.14506 
L HV-VV 0.606424 0.777114 2.35719 1.64955 
C HH-HV 0.575344 0.692635 2.50954 2.10982 
C HH-VV 0.482214 0.571004 2.61262 2.72449 
C HV-VV 0.566975 0.614171 2.68826 2.90562 

 
Table 4. Assessment of classification precision using bivariate intensity data 

 
 

k̂  Variance (x 10-3) Input data 
(band - polarisation) ML ICM ML ICM 

L HH-HV 0.020904 0.025786 2.56678 3.39736 
L HH-VV 0.193186 0.372729 2.68909 3.12572 
L HV-VV 0.008927 0.014442 2.66556 5.07250 
C HH-HV -0.001943 -0.008580 2.06280 2.23533 
C HH-VV 0.092317 0.148819 3.19603 4.39456 
C HV-VV 0.005144 0.007090 2.62186 3.37758 

 
Table 5. Assessment of classification precision using phase difference data 

 
 

k̂  Variance (x 10-3) Input data 
(band - polarisation) ML ICM ML ICM 

L HH-HV 0.105324 0.187371 3.12436 3.90025 
L HH-VV 0.272400 0.360187 2.74605 3.37850 
L HV-VV 0.318741 0.455631 2.57741 2.70515 
C HH-HV 0.116141 0.165443 3.19497 4.82030 
C HH-VV 0.181810 0.274525 3.71316 4.92802 
C HV-VV 0.203089 0.272691 2.76586 3.36486 

 
Table 6. Assessment of classification precision using the ratio of intensities data 

 
 

k̂  Variance (x 10-3) Input data 
(band - polarisation) ML ICM ML ICM 

L HH-HV 0.469581 0.633668 2.63720 2.34108 
L HH-VV 0.325979 0.424540 2.77930 2.85456 
C HH-HV 0.418908 0.521662 2.59719 2.55940 
C HH-VV 0.416235 0.565799 2.65869 2.74780 

 
Table 7. Assessment of classification precision using the the pair intensity-phase data  
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